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Abstract

In this work, a set of comparative experiments for the problem of au-
tomatically filtering unwanted electronic mail messages are performed
on two public corpora: PUl and LingSpam. Several variants of the
AdaBoost algorithm with confidence-rated predictions [14] have been
applied, which differ in the complexity of the base learners considered.
Two main conclusions can be drawn from our experiments: a) The
boosting-based methods clearly outperform the other learning algo-
rithms results published on the two evaluation corpora, achieving very
high levels of the Iy measure; b) Increasing the complexity of the base
learners allows to obtain better “high—precision” classifiers, which is a
very important issue when misclassification costs are considered.



1 Introduction

Spam-mail filtering is the problem of automatically filtering unwanted elec-
tronic mail messages. The term “spam mail” is also commonly referred to
as “junk mail” or “unsolicited commercial mail”. Nowadays, the problem
has achieved a big impact since bulk emailers take advantage of the great
popularity of the electronic mail communication channel for indiscriminately
flooding email accounts with unwanted advertisements. The major factors
that contribute to the proliferation of unsolicited spam email are the fol-
lowing two: 1) bulk email is inexpensive to send, and 2) pseudonyms are
inexpensive to obtain [4]. On the contrary, individuals may waste a large
amount of time transferring unwanted messages to their computers and sort-
ing through those messages once transferred, to the point that they may be
likely to become overwhelmed by spam.

Automatic IR methods are well suited for addressing this problem, since
spam messages can be distinguished from the “legitimate” email messages
because of their particular form, vocabulary, and word patterns, which can
be found in the header or body of the messages.

The spam filtering problem can be seen as a particular instance of the
Text Categorization problem (TC), in which only two classes are possible:
spam and legitimate. However, since one is the opposite of the other, it also
can be seen as the problem of identifying a single class, spam. In this way,
the evaluation of automatic spam filtering systems can be done by using
common measures of IR (precision, recall, etc.). Another important issue is
the relative importance between the two types of possible misclassifications:
While an automated filter that misses a small percentage of spam may be
acceptable to most users, fewer people are likely to accept a filter that in-
correctly identifies a small percentage of legitimate mail as spam, especially
if this implies the automatic discarding of the misclassifed legitimate mes-
sages. This problem suggests the consideration of misclassification costs for
the learning and evaluation of spam filter systems.

In recent years, a vast amount of techniques have been applied to TC,
achieving impressive performances in some cases. Some of the top—perform-
ing methods are Ensembles of Decision Trees [17], Support Vector Machines
[8], Boosting [15] and Instance-based Learning [19].

Spam filtering has also been treated as a particular case of TC. Cohen [3]
used a method based on TF-IDF weighting and the rule learning algorithm
RIPPER to classify and filter email. Sahami et al. [12] used the Naive Bayes
approach to filter spam email. Drucker et al. [5] compared Support Vector
Machines (SVM), boosting of C4.5 trees, RIPPER and Rocchio, concluding



that SVM’s and boosting are the top—performing methods and suggesting
that SVM’s are slightly better in distinguishing the two types of misclassi-
fication. Androutsopoulos and colleagues compared Sahami’s Naive Bayes
against the TIMBL Memory-based learner [2], and combined these two ap-
proaches in a stack of classifiers which improved the performance [13]. In
their work, these autors introduce cost-sensitive evaluation measures and
two public data sets, the PU1 [1] and the LingSpam [2], which might be-
come standard benchmark corpora for the problem.

In this paper, we show that the AdaBoost algorithm with confidence—
rated predictions is a very well suited algorithm for addressing the spam
filtering problem. We have obtained very accurate classifiers on two corpora,
namely PU1 and LingSpam, and we have observed that the algorithm is very
robust to overfitting. Another advantage of using AdaBoost is that no prior
feature filtering is needed since it is able to efficiently manage large feature
sets (of tens of thousands).

In the second part of the paper we show how increasing the expressive-
ness of the base learners can be exploited for obtaining the “high—precision”
filters that are needed for real user applications. We have evaluated the
results of such filters using the measures introduced in [1], which take into
account the misclassification costs, and have substantially improved the re-
sults mentioned in that work.

The paper is organized as follows: Section 2 is devoted to explain the
AdaBoost learning algorithm and the variants used in the comparative ex-
periments. In section 3 the setting is presented in detail, including the
corpora and the experimental methodology used. Section 4 reports the ex-
periments carried out and the results obtained. Finally, section 5 concludes
and section 6 outlines some lines for further research.

2 The AdaBoost Algorithm

In this section the generalized AdaBoost algorithm with confidence-rated
predictions [14] is described, restricting to the case of binary classification.

The purpose of boosting is to find a highly accurate classification rule
by combining many weak rules (or weak hypotheses), each of which may
be only moderately accurate. It is assumed the existence of a separate
procedure called the WeakLearner for acquiring the weak hypotheses. The
boosting algorithm finds a set of weak hypotheses by calling the weak learner
repeatedly in a series of T rounds. These weak hypotheses are then linearly
combined into a single rule called the combined hypothesis.



Algorithm 1: The AdaBoost learning algorithm
ApaBoost(in: S = {(z;, yi) }iey))
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Let S = {(z1,41),-- ., (Zm, Ym) } be the set of m training examples, where
each instance z; belongs to a instance space X’ and y; € {—1,+1} is the class
or label associated to z;. The goal of the learning procedure is to produce
a function of the form f : A — R, such that, for any example x, the sign
of f(z) is interpreted as the predicted class (=1 or +1), and the magnitude
|f(x)| is interpreted as a measure of confidence in the prediction. Such a
function can be used either for classifying or ranking new unseen examples.

The pseudo—code of AdaBoost is presented in Algorithm 1. It maintains
a vector of weights as a distribution D over examples. The goal of the
WeakLearner algorithm is to find a weak hypothesis with moderately low
error with respect to these weights. Initially, the distribution Dy is uniform,
but the boosting algorithm exponentially updates the weights on each round
to force the weak learner to concentrate on the examples which are hardest
to predict by the preceding hypotheses.

More precisely, let D; be the distribution at round ¢, and hy : & — R the
weak rule acquired according to D;. In this setting, weak hypotheses h(z)
also make real-valued confidence-rated predictions (i.e., the sign of h(z) is
the predicted class, and |hi(z)| is interpreted as a measure of confidence in
the prediction). A parameter oy is then chosen and the distribution Dy is
updated. The choice of a; will be determined by the type of weak learner (see
next section). In the typical case that «; is positive, the updating function
decreases (or increases) the weights Dy (i) for which h; makes a good (or
bad) prediction, and this variation is proportional to the confidence |hs(z;)].



The final hypothesis, f, computes its predictions using a weighted vote of
the weak hypotheses.

In [14] it is proven that the training error of the AdaBoost algorithm (i.e.
the fraction of training examples ¢ for which the sign of f(z;) differs from y;)
is at most Hthl Zy, where Z, is the normalization factor computed on round
t. This upper bound is used in guiding the design of both the parameter o
and the WeakLearner algorithm, which attempts to find a weak hypothesis
h; that minimizes Z;.

2.1 Learning Weak Rules

In [14] three different variants of AdaBoost are defined, corresponding to
three different methods for choosing the a; values and calculating the pre-
dictions of the weak hypotheses. In this work we concentrate on AdaBoost
with real-valued predictions since it is the one that has achieved the best
results in the Text Categorization domain [15].

According to this setting, weak hypotheses are simple rules with real—
valued predictions. Such simple rules test the value of a boolean predicate
and make a prediction based on that value. The predicates used refer to the
presence of a certain word in the text, e.g. “the word money appears in the
message”. Formally, based on a given predicate p, our interest lies on weak
hypotheses h which make predictions of the form:

¢ otherwise

h(z) = { co if p holds in z

where the ¢y and ¢; are real numbers.

For a given predicate p, the values ¢y and ¢; are calculated as follows.
Let X be the subset of examples for which the predicate p holds and let
X, be the subset of examples for which the predicate p does not hold. Let
[7], for any predicate =, be 1 if 7 holds and 0 otherwise. Given the current
distribution Dy, the following real numbers are calculated for j€{0,1}, and
for be{+1,-1}:

Wi =" Di(i)[xi € X; Ayi =b].
=1

That is, ij is the weight, with respect to the distribution Dy, of the
training examples in partition X; which are of class b. As it is shown in [14]



Z; is minimized for a particular predicate by choosing:

1. (Wi
cj=-In|—1]. (1)
2 Wil

and by setting oy = 1. These settings imply that:

Zy=2 Y \JWiw,. (2)
s€{0,1}
Thus, the predicate p chosen is that for which the value of Z; is smallest.
Very small or zero values for the parameters W/ cause ¢; predictions
to be large or infinite in magnitude. In practice, such large predictions
may cause numerical problems to the algorithm, and seem to increase the
tendency to overfit. As suggested in [15], the following smoothed values for

c¢; have been considered:
1. (W2
Y S (3)
2 Wil +¢€

giving € the value 1/m. This smoothing affects the value of Z as follows:

It is important to see that the so far presented weak rules can be directly
seen as decision trees with a single internal node (which tests the value of a
boolean predicate) and two leaf nodes that give the real-valued predictions
for the two possible outcomes of the test. These extremely simple decision
trees are sometimes called decision stumps. In turn, the boolean predicates
can be seen as binary features (we will use the word feature instead of
predicate from now on). Thus, the already described criterion for finding
the best weak rule, or the best feature, can be seen as a natural splitting
criterion and used for performing decision—tree induction [14].

Following the idea suggested in [14] we have extended the WeakLearner
algorithm to induce arbitrarily deep decision trees. The splitting criterion
used consists in choosing the feature that minimizes equation (2), while the
predictions at the leaves of the boosted trees are given by equation (1). Note
that the general AdaBoost procedure remains unchanged.

In this paper, we will denote as TreeBoost the AdaBoost algorithm in-
cluding the extended WeakLearner. TreeBoost[d] (or TB[d] in some figures)
will stand for a learned classifier with weak rules of depth d. As a special
case, TreeBoost[0] will be denoted as Stumps.



3 Setting

3.1 Domain of Application

The empirical experiments in this work have been performed on two pub-
lic corpora for the anti-spam email filtering problem: the PU1l and the
LingSpam.! The PU1 corpus contains personal messages and spam mes-
sages. The LingSpam corpus contains messages extracted from the Linguist
list and spam messages. Table 3.1 shows the sizes of the two corpora. On the
one hand, the percentage of spam emails on the LingSpam seems to be more
realistic than the percentage on the PU1l. On the other hand, the topics of
legitimate messages in the PUL are more diverse than in the LingSpam, in
which all messages are related to linguistics.

The two corpora are presented partitioned into 10 folds, in order to
perform the experiments using 10-fold cross-validation.

The feature set of the corpora is the commonly used in the text catego-
rization literature bag-of-words model with binary features. In this model,
each word in the vocabulary forms a binary feature, and a message is repre-
sented having the features corresponding to the occurring words set to true.
The features of the PU1 corpus are given encrypted, in order to protect the
privacy of the personal messages. Four versions of the corpora are available,
differing on the use of two resources: a stop-word list and a lemmatizer.
The enabling/disabling of these two resources in the generation results in
the following four versions:

e BARE: No resources used. The features are the lower-cased words.
e LEMM: Lemmatizer used; no stop-word removal.

e STOP: Stop-word list used; no lemmatizer.

e LEMM STOP: Both lemmatizer and stop-word list used.

Table 3.1 shows the feature space dimension of the four versions.

3.2 Experimental Methodology

Evaluation Measures. The measures used in this paper for evaluating
the spam filtering system are introduced in this section. Let .S and L be
the number of spam and legitimate messages in the corpus, respectively; let

'The two corpora are freely available from the following address
http://www.iit.demokritos.gr/~ionandr



PU1 Lingspam

Messages 1,099 2,893
Spam 481 481
Legitimate 618 2,412
Spam % 43.7% 16.6%
BARE size 26,449 65,723
LEMM size 23,312 NA
STOP size 26,275 NA

LEMM STOP size 23,137 NA

Table 1: Dimensions of the evaluation corpora.

S+ denote the number of spam messages that are correctly classified by a
system, and .S_ the number of spam messages misclassified as legitimate. In
the same way, let L, and L_ be the number of legitimate messages classified
by a system as spam and legitimate, respectively. These four values form a
contingency table which summarizes the behaviour of a system. The widely-
used measures precision (p), recall (r) and Fj are defined as follows:

Sy Sy (8 + )pr

= —— r=— F:
p S+'+mL+ S+—F5; p ﬁzp{—r

The Fjg measure is the harmonic mean between precision and recall, and
with § = 1 gives equal weigth to the combined measures. Additionally, some

experiments in the paper will also consider the accuracy measure (acc =
L_+S
I+s )
A way to distinguish the two types of misclassification is the use of utility

measures [9] used in the TREC evaluations [11]. In this general measure,

positions in the contingency table are associated loss values, Ag+, As—, Ar4,
Ar—, which indicate how desirable are the outcomes, according to a user-
defined scenario. The overall performance of a system in terms of the utility
is S_|_/\5_|_ +S_As_ + L_|_/\L_|_ + L_Ar_.

Androutsopoulos et al. [1] propose particular scenarios in which misclas-
sifying a legitimate message as spam is A times more costly than the sym-
metric misclassification. In terms of utility, these scenarios can be translated
into Asy =0, Ag— = =1, Ay = =X and A = 0. They also introduce
the weighted accuracy (WAcc) measure, which is a A-cost sensitive accuracy
measure:

A L_+Sy

Ace =
W Ace A



When evaluating filtering systems, this measure suffers from the same
problems as standard accuracy [18]. Despite this fact, we will use it for
comparison purposes.

3.3 Baseline Algorithms

In order to compare our boosting methods against other techniques, we
include the results of the following algorithms on the two evaluation corpora:

e Decision Trees. Standard TDIDT learning algorithm, using the
RLM distance-based function for feature selection. We have evalu-
ated it on the PUI corpus. See [10] for complete details about the
particular implementation.

e Naive Bayes. We include the best reported results obtained by the
naive bayes approach on the PU1 Corpus [1] and on the LingSpam [2].

e k-NN. We include the best results on the LingSpam corpus reported
in [2].

e Stacking. This approach combines Naive Bayes and k-NN in a stack
of classifiers. Several configurations are evaluated on the LingSpam
corpus in [13]; we report the best results of that paper.

3.4 Tuning Procedure

This section presents a general procedure for empirically tuning a parame-
ter of the system, according to a given optimization criterion. The tuning
procedure is designed for being part of the 10-fold cross-validation process.
Given a parameter p to be tuned, an evaluation measure and an optimization
criterion, the procedure is the following:

1. For each trial in the 10-fold cross-validation process:

e Use 8 of the 9 training subsets for learning a classifier. We select
the 8 folds randomly. The remaining fold is used as a validation
subset.

e For a range of values of the parameter p, test the classifier on the

validation subset.

2. For each tested value of p, compute the evaluation measure using the
outputs of all the trials.



3. According to the optimization criterion, select the best value for p as
the value to be used in the final system.

4 Experiments

4.1 Comparing methods

The purpose of our first experiment is to show the general performance of
AdaBoost in the spam-filtering domain. Six AdaBoost classifiers have been
learned, setting the depth of the weak rules from 0 to 5; we denote each
clagsifier as TreeBoost[d], where d stands for the depth of the weak rules;
as a particular case, we denote the TreeBoost[0] classifier as Stumps. Each
version of TreeBoost has been learned for up to 2,500 weak rules on the PU1
and 1,000 weak rules on the LingSpam.

Figure 1 shows the F; measure of each classifier learned, as a function
of the number of rounds used. These plots also contain the performance of
the baseline algorithms. It can be seen that TreeBoost clearly outperforms
the other algorithms. The experiment also shows that, above a certain
number of rounds, all TreeBoost versions achieve consistent good results,
and that there is no overfitting in the process. After 150 rounds of boosting,
all versions reach an Fj value above 97% on the two corpora. It can be
noticed that the deeper the weak rules, the smaller the number of rounds
needed to achieve good performance. This is not surprising, since deeper
weak rules handle much more information. Additionally, the figure shows
avobe the stabilization, increasing the number of rounds results only in slight
variations of the F| measure.

A concrete value for the T parameter of the TreeBoost learning algorithm
must be given, in order to obtain real classifiers and to be able to make com-
parisons between the different versions of TreeBoost and baseline methods.
To our knowledge, it is still unclear what is the best way for choosing T'.
On the PU1, we have estimated the T parameter with the tuning procedure
presented in section 3.4, giving T values from 1 to 2,500 in steps of 25 and
selecting the value which maximizes the Fy measure. Since the performance
is very stable and the tuning procedure involves intense processing, we have
fixed 1,000 rounds for the classifiers on the LingSpam corpus.

Tables 2 and 3 present the results of all classifiers on the two corpora.
For each classifier, we include the number of rounds used, recall, precision,
Fy and the maximum Fj achieved all over the rounds learned. According
to the results, boosting classifiers clearly outperform the other algorithms.
Naive Bayes, k-NN and the Stack achieve precision rates slightly lower than

10



PU1 corpus
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Figure 1: F; measure of Stumps and TreeBoost[d], for increasing number of
rounds
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those obtained by boosting classifiers; however, the obtained recall rates are
much lower.

T  recall precision Fy Fra
N. Bayes - 83.98 95.11 89.19 -
D. Trees - 89.81 88.71 89.25 -
Stumps 525  96.47 97.48 96.97 97.39

TreeBoost[1] | 525 96.88 97.90 97.39 97.60
TreeBoost[2] | 725  96.67 98.31 97.48 97.59
TreeBoost[3] | 675 96.88 97.90 97.39 97.81
TreeBoost[4] | 450 97.09 98.73 97.90 98.01
TreeBoost[5] | 550  96.88 98.52 97.69 98.12

Table 2: Performance of all classifiers on the PU1 corpus

Accuracy results have been compared using the 10-fold cross-validated
paired t test. Boosting classifiers perform significantly better than Decision
Trees.? On the contrary, no significant differences can be observed between
the different versions of TreeBoost. More interestingly, it can be noticed that
accuracy and precision rates slightly increase with the expressiveness of the
weak rules, and that this improvement does not affect the recall rate. This
fact will be exploited in the following experiments.

4.2 High-Precision classifiers

This section is devoted to evaluate TreeBoost in high-precision scenarios,
where only a very low (or null) proportion of legitimate to spam misclassifi-
cations is allowed.

4.2.1 Rejection Curves.

We start by evaluating whether the confidence of a prediction, i.e., the mag-
nitude of the prediction, is a good indicator of the quality of the prediction
or not. For this purpose, rejection curves are computed for each classifier.
The procedure to compute a rejection curve is the following: For increas-
ing proportions p between 0 and 100, reject the p% of the less confident
predictions, both positive or negative, and compute the accuracy of the re-
maining (100 — p)% predictions. The desired behaviour is that accuracy
values smoothly increase as long as p increases.

2Since we do not own the other classifiers, no tests have been ran; but presumably
boosting methods are also significantly better.

12



T recall precision Fy Fra

N. Bayes - 82.40 99.00 89.94 -
k-NN - 88.60 97.40 92.79 -
Stacking - 91.70 96.50 93.93 -
Stumps 1,000 97.92 98.33 98.12 98.33

TreeBoost[1] | 1,000 97.30 98.53 97.91 98.12
TreeBoost[2] | 1,000 96.67 98.52 97.59 98.11
TreeBoost[3] | 1,000 96.47 98.93 97.68 98.01
TreeBoost[4] | 1,000 96.26  99.14  97.68 97.89
TreeBoost[5] | 1,000 96.26  99.14  97.68 97.90

Table 3: Performance of all classifiers on the LingSpam corpus

Figure 2 plots the rejection curves computed for the six learned classi-
fiers. Three curves are given in each plot: the accuracy curve, noted as ‘All’,
the curve considering only misclassifications of spam as legitimate, noted as
‘S to L, and the curve considering the misclassifications of legitimate as
spam, noted as ‘L to S’. The latter are the undisired type of errors of these
scenarios. The following conclusions can be drawn:

e The confidence of a prediction is a good indicator of its quality. The
higher the confidence of the predictions considered, the higher the
accuracy achieved.

e The depth of weak rules greatly improves the quality of the predictions.
On the PU1 corpus, whereas Stumps needs to reject the 73% of the
less confident examples to achieve a 100% of accuracy, TreeBoost[5]
only needs 23%. A similar but less significant behaviour occurs on the
LingSpam. In other words, deeper TreeBoost filters concentrate the
misclassified examples closer to the decision threshold.

e Spam predictions seem to be better than legitimate predictions, since
the errors produced by the most confident predictions are of the type ‘S
to L. A possible explanation is that the classifiers are biased to predict
the most frequent class, that is legitimate. However, the results are
not significant enough for stating this idea.

e A potential final email filtering application could have the following
specification: Messages whose confidence of the prediction is greater
than a threshold 7 are automatically classified, i.e., spam messages are

13



‘blocked” and legitimate messages are delivered to the user. Messages
whose prediction confidence is lower than 7 are stored in a special
fold for dubious messages. The user has to verify if these are legit-
imate messages. This specification is suitable for having automatic
filters with different degrees of strictness (i.e., different values for the
T parameter). 7 values could be tuned using the procedure of section
3.4.

4.2.2 Cost—Sensitive Evaluation.

In this section, TreeBoost classifiers are evaluated using the A-cost measures
introduced in section 3. Three scenarios of strictness are presented in [1]:
a) No cost considered, corresponding to A = 1; b) Semi-automatic scenario,
for a moderately accurate filter, giving A = 9; and ¢) Completely automatic
scenario, for a very high accurate filter, assigning A = 999. As noted in
section 3, we will consider these scenarios as particular utility matrices.

In [16] a simple modification of the AdaBoost algorithm for handling
general utility matrices is presented. The idea is to initialize the weight
distribution of examples according to the given utility matrix, and then
run the learning algorithm as usual. We have performed experiments with
this setting, but the results are not convincing: only the initial rounds of
boosting are affected by the initialization based on utility; after a number of
rounds, the performance seems to be like if no utility had been considered.
Since our procedure for tuning the number of rounds can not determine
when the initial stage ends, we have rejected this approach. We think that
an appropiate modification of the AdaBoost algorithm should also consider
the weight updating function.

Another approach consists in adjusting the decision threshold #. In a
default scenario, corresponding to A = 1, an example is classified as spam if
its prediction is greater than 0; in this case, # = 0. Increasing the value of
6 results in a higher precision classifier. Lewis presented [9] a procedure for
calculating the optimal decision threshold for a system, given an arbitrary
utility matrix. The procedure is valid only when the system outputs proba-
bilities, so the prediction margins resulting from the boosting classifications
should be mapped into probabilities. A method for estimating probabilities
given the output of AdaBoost is suggested in [7], using a logistic function.
Initial experiments with this function have not worked properly, because
relatively low predictions are sent to extreme probability values. A possible
solution would be to scale down the predictions before applying the prob-
ability estimate; however, it can be observed that prediction margins grow

14



PU1 corpus
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Figure 2:

Rejection curves for all TreeBoost classifiers. z axis: percentage

of rejected predictions; y axis: accuracy. Note that axis ranges are different
in the plots.
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with both the number and the depth of the used weak rules. Since many
parameters are involved in this scaling, we have rejected the probability
estimation of predictions.

Alternatively, we make our classification scheme sensitive to the A fac-
tor by tuning the # parameter to the value which maximizes the weighted
accuracy measure. Once more, the concrete value for # is obtained using
the tuning procedure of section 3.4, in which several values for the param-
eter are tested. Tables 4 and 5 summarize the results obtained on the two
corpus, giving A factor values of 9 and 999. Results presented in [1] for the
PU1 corpus, and [2] and in [13] for the LingSpam corpus are also reported.

Again, TreeBoost clearly outperforms the baseline methods. On the PU1
corpus, with A = 9, very high-precision rates are achieved, maintaining con-
siderably high recall rates. It seems that the depth of TreeBoost slightly im-
proves the performance, although no significant differences can be achieved.
For A = 999, precision rates of 100% (which is the implicit goal in this
scenario) are achieved, except for Stumps, maintaining fair levels of recall.
However, recall rates are slightly unstable with respect to the depth of Tree-
Boost varying from 64.45% to 76.30%. On the LingSpam corpus, with
A =9, TreeBoost classifiers achieve very high-precision rates and recall rates
around 95% which clearly outperform the other methods. For A = 999 very
high-precision rates are achieved, but the recall rates are unstable. In this
corpus, the differences in performance with respect to the depth of the weak
rules are also unstable, and not convincing enough for stating conclusions.

Our impression is that high values in the A factor seem to introduce
instability in the evaluation, which becomes oversensitive to outliers. For
example, on the PU1, which contains 1,099 examples, weighted accuracy
does not work properly when giving A values of 999, since the misclassifica-
tion of only one legitimate message leads to score worse than if any email had
been filtered (this would give WAce = 99.92%). Moreover, for 100% preci-
sion values, the recall variation from 0% to 100% only affects the measure
in 0.08 units.

4.3 Secure Recall

In order to give a clearer picture of the behaviour of classifiers when moving
the decision threshold, we include in Figure 3 the precision-recall curves of
each classifier. These curves are built giving 8 a wide range of values, and
computing for each value the recall and precision rates. In these curves,
high-precision rates of 100%, 99%, 98% and 95% have been selected so as
to obtain the recall rate at these points. Table 6 summarizes these sam-
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A=9 A =999
0 Recall Prec. WAcc 0 Recall Prec. WAcc
NB - 78.77 96.65  96.38 - 46.96 98.80 99.47
Stumps | 09.2 89.60 99.08 98.58 | 16.3 84.20 99.51 99.66
TB[1] 10.2 93.55 98.71 98.59 | 46.9 74.43 100 99.98

TB|2] 24.1 93.76 9890 98.76 | 96.7 76.30 100 99.98
TB[3] 45.2 91.48 99.32 9887 | 1264 74.01 100 99.98
TB[4] 19.1 94.80 99.35 99.14 | 123.1 64.45 100 99.97
TB[5] 374 93.97 99.12 98.92 | 178.0 66.53 100  99.97

Table 4: Cost—sensitive evaluation results on the PU1 corpus.

ples. All the variants are indistinguishable at level of 95% of precision.
However, when moving to higher values of precision (> 95%) a significant
difference seems to occur between Stumps and the rest of variants using
deeper weak rules. This fact proves that increasing the expressiveness of
the weak rules can improve the performance when requiring very high pre-
cision filters. Unfortunately, no clear conclusions can be drawn about the
most appropriate depth. Parenthetically, it can be noted that on the PU1
TreeBoost[4] achieves the best recall rates.

4.4 Experiments with other Feature Sets

The last experiment of this paper explores the performance of boosting
classifiers in all the available feature space versions of the PU1 corpus; these
differ in the type of features used to represent the messages. For each ver-
sion of the corpus, namely BARE, LEMM, STOP and LEMM STOP, a
TreeBoost[3] classifier has been learned, with up to 2500 rounds of boosting.
Since the intention of this experiment is to show if more complex features
can potentially perform better, no tuning procedure to get a concrete T
value is required. Figure 4 shows the F; measure with respect to the num-
ber of weak rules used. It can be observed that all classifiers perform very
similar (left figure), although slight improvements of 1 point can be obtained
with lemmatized features (right figure). These results agree with the ones
reported by Androutsopoulos et al. in [1].

5 Conclusions

The experiments presented in this paper show that the AdaBoost learning
algorithm is appropiate for the spam email filtering problem. It clearly

17



A=09 A =999
0 Recall Prec. WAcce 0 Recall Prec. WAcc

NB - 77.57  99.45  99.43
k-NN - 81.90 98.80 99.40 results not provided
Stack - 84.80 98.80 99.46

Stumps | 7.0 96.47 99.15 99.76 | 82.0 52.81 99.61 99.95
TB[1] 26.0 94.80 99.35 99.77 | 217.1 50.94 100 99.99

TB|2] 31.2 95.22  98.92 99.69 | 209.5 77.55 99.73 99.95
TB[3] 32,5 95.84 99.14 99.75 | 342.6 74.22 100 99.99
TB[4] 26.0 95.84 99.14 99.75 | 337.2 81.91 100 99.99
TB[5] -9.1 96.26 99.14 99.76 | 451.1 79.83 100 99.99

Table 5: Cost—sensitive evaluation results on the LingSpam corpus.

PU1
100%  99% 98% 95%
Stumps 62.37 87.94 94.17 98.75

TreeBoost[1] | 81.91 91.26 96.88 98.75
TreeBoost[2] | 81.49 90.64 97.08 98.54
TreeBoost[3] | 77.54 93.13 96.88  98.54
TreeBoost[4] | 80.24 96.25 97.71 98.75
TreeBoost[5] | 77.75 93.55 97.29 98.75

LingSpam
100%  99% 98%  95%
Stumps 4470  97.50 98.38  98.96

TreeBoost[1] | 77.75 95.42 98.55 99.80
TreeBoost[2] | 76.30 94.60 98.55 99.58
TreeBoost[3] | 85.65 96.25 98.96 99.37
TreeBoost[4] | 83.99 96.88 98.75 99.16
TreeBoost[5] | 85.56 96.67 98.54 98.96

Table 6: Recall rate of filtered spam messages with respect to fixed points
of high-precision rate
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Figure 3: Precision-Recall curves and recall values for the fixed precision
rates at 100%, 99%, 98% and 95%. z axis: recall; y axis: precision.
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Figure 4: Error rate of TreeBoost[3] classifiers learned with different feature
sets on the PUL. The right-hand side plot is a zoom of the left-hand side
plot.

outperforms Decision Trees, Naive Bayes and k-NN methods on the two eva-
luated benchmark corpora: the PU1 corpus and the LingSpam corpus. In
these data sets, the method is resistant to overfitting and Fj rates above 97%
are achieved. Procedures for automatically tuning the classifier parameters,
such as the number of boosting rounds, are provided.

In scenarios where high-precision classifiers are required, AdaBoost clas-
sifiers have been proved to work properly. Experiments have exploited the
expressiveness of the weak rules when increasing their depth. It can be con-
cluded that deeper weak rules tend to be more suitable when looking for a
very high precision classifier. In this situation, the achieved results on the
two corpura are fairly satisfactory.

Two AdaBoost classifiers capabilities have been shown to be useful in
final email filtering applications: a) The confidence of the predictions sug-
gests a filter which only classifies the more confident messages, delivering
the remaining messages to the final user. b) The classification threshold can
be tuned to obtain a very high precision classifier.

6 Future Work

As a future research line, we would like to study the presented techniques in
a more difficult corpus. We think that both the PU1 and the LingSpam are
too easy, and that the PUL is also too small. Due to these fatcs, default pa-
rameters produce very good results, and the tuning procedures result only in
slight improvements. Moreover, some experiments not reported here (which
study the effect of the number of rounds, the use of richer feature spaces,
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etc.) have shown us that the confidence of classifiers depends on several pa-
rameters. Using a larger corpus, the effectiveness of the tuning procedures
would be more explicit and, hopefully, more significant conclusions about
the optimal parameter settings of AdaBoost could be drawn.

In order to overcome these limitations, we are currently working on the
development of a new corpus which will contain messages in two languages,
English and Spanish, with a realistic proportion of spam messages. Our
intention is to make available most of the information in the header and
the body of the messages, which will allow to experiment with other feature
spaces than the typical ‘bag of words’ model. For example, we think that
information about the components of the sender email address, the number
and sequences of some special characters, such as spaces or ‘$’, and n-grams
of some words can be relevant for identifying spam messages. Moreover, we
want to keep the date and time of messages in the header, which will allow
to simulate a filtering system across time.

Another interesting line for future research is the portability of anti-spam
filters, that is, to study how a filter learned in a particular data set performs
in a different data set. We think that this is a very important issue for
general NLP systems which are intended to be final real applications. Since
the features provided in the PU1 corpus are encoded and the features in the
LingSpam are not, the study of the portability is not possible between these
two corpora. Our new future corpus will allow to study the portability of
filters against the LingSpam corpus and across time.

Regarding to the learning process, we would like to study the introduc-
tion of the misclassification costs inside the AdaBoost learning algorithm.
Initial experiments with the method proposed in [16] have not worked pro-
perly, although we believe that learning directly classifiers according to some
utility settings will perform better than tuning a classifier once learned.

In addition, we would like to experiment with the following two learning
algorithms: 1) Alternating Decision Trees [6], for being a boosting-based
technique that generalizes the notion of lineraly combined decision trees,
and 2) Support Vector Machines, for being the other top-performing method
in Text Categorization problems.
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