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1 IntroductionSpam-mail �ltering is the problem of automatically �ltering unwanted elec-tronic mail messages. The term \spam mail" is also commonly referred toas \junk mail" or \unsolicited commercial mail". Nowadays, the problemhas achieved a big impact since bulk emailers take advantage of the greatpopularity of the electronic mail communication channel for indiscriminately
ooding email accounts with unwanted advertisements. The major factorsthat contribute to the proliferation of unsolicited spam email are the fol-lowing two: 1) bulk email is inexpensive to send, and 2) pseudonyms areinexpensive to obtain [4]. On the contrary, individuals may waste a largeamount of time transferring unwanted messages to their computers and sort-ing through those messages once transferred, to the point that they may belikely to become overwhelmed by spam.Automatic IR methods are well suited for addressing this problem, sincespam messages can be distinguished from the \legitimate" email messagesbecause of their particular form, vocabulary, and word patterns, which canbe found in the header or body of the messages.The spam �ltering problem can be seen as a particular instance of theText Categorization problem (TC), in which only two classes are possible:spam and legitimate. However, since one is the opposite of the other, it alsocan be seen as the problem of identifying a single class, spam. In this way,the evaluation of automatic spam �ltering systems can be done by usingcommon measures of IR (precision, recall, etc.). Another important issue isthe relative importance between the two types of possible misclassi�cations:While an automated �lter that misses a small percentage of spam may beacceptable to most users, fewer people are likely to accept a �lter that in-correctly identi�es a small percentage of legitimate mail as spam, especiallyif this implies the automatic discarding of the misclassifed legitimate mes-sages. This problem suggests the consideration of misclassi�cation costs forthe learning and evaluation of spam �lter systems.In recent years, a vast amount of techniques have been applied to TC,achieving impressive performances in some cases. Some of the top{perform-ing methods are Ensembles of Decision Trees [17], Support Vector Machines[8], Boosting [15] and Instance{based Learning [19].Spam �ltering has also been treated as a particular case of TC. Cohen [3]used a method based on TF-IDF weighting and the rule learning algorithmRIPPER to classify and �lter email. Sahami et al. [12] used the Naive Bayesapproach to �lter spam email. Drucker et al. [5] compared Support VectorMachines (SVM), boosting of C4.5 trees, RIPPER and Rocchio, concluding2



that SVM's and boosting are the top{performing methods and suggestingthat SVM's are slightly better in distinguishing the two types of misclassi-�cation. Androutsopoulos and colleagues compared Sahami's Naive Bayesagainst the TiMBL Memory-based learner [2], and combined these two ap-proaches in a stack of classi�ers which improved the performance [13]. Intheir work, these autors introduce cost-sensitive evaluation measures andtwo public data sets, the PU1 [1] and the LingSpam [2], which might be-come standard benchmark corpora for the problem.In this paper, we show that the AdaBoost algorithm with con�dence{rated predictions is a very well suited algorithm for addressing the spam�ltering problem. We have obtained very accurate classi�ers on two corpora,namely PU1 and LingSpam, and we have observed that the algorithm is veryrobust to over�tting. Another advantage of using AdaBoost is that no priorfeature �ltering is needed since it is able to e�ciently manage large featuresets (of tens of thousands).In the second part of the paper we show how increasing the expressive-ness of the base learners can be exploited for obtaining the \high{precision"�lters that are needed for real user applications. We have evaluated theresults of such �lters using the measures introduced in [1], which take intoaccount the misclassi�cation costs, and have substantially improved the re-sults mentioned in that work.The paper is organized as follows: Section 2 is devoted to explain theAdaBoost learning algorithm and the variants used in the comparative ex-periments. In section 3 the setting is presented in detail, including thecorpora and the experimental methodology used. Section 4 reports the ex-periments carried out and the results obtained. Finally, section 5 concludesand section 6 outlines some lines for further research.2 The AdaBoost AlgorithmIn this section the generalized AdaBoost algorithm with con�dence-ratedpredictions [14] is described, restricting to the case of binary classi�cation.The purpose of boosting is to �nd a highly accurate classi�cation ruleby combining many weak rules (or weak hypotheses), each of which maybe only moderately accurate. It is assumed the existence of a separateprocedure called the WeakLearner for acquiring the weak hypotheses. Theboosting algorithm �nds a set of weak hypotheses by calling the weak learnerrepeatedly in a series of T rounds. These weak hypotheses are then linearlycombined into a single rule called the combined hypothesis.3



Algorithm 1: The AdaBoost learning algorithmAdaBoost(in: S = f(xi; yi)gmi=1))for i = 1 to mD1(i) 1=mfor t = 1 to Tht  WeakLearner(S;Dt)Choose �t 2 Rfor i = 1 to mDt+1(i) Dt(i)exp(��tyiht(xi))Zt# Zt is chosen so thatDt+1 will be a distributionreturn the combined hypothesis: f(x) = TXt=1 �tht(x)Let S = f(x1; y1); : : : ; (xm; ym)g be the set ofm training examples, whereeach instance xi belongs to a instance space X and yi2f�1;+1g is the classor label associated to xi. The goal of the learning procedure is to producea function of the form f : X ! R, such that, for any example x, the signof f(x) is interpreted as the predicted class (�1 or +1), and the magnitudejf(x)j is interpreted as a measure of con�dence in the prediction. Such afunction can be used either for classifying or ranking new unseen examples.The pseudo{code of AdaBoost is presented in Algorithm 1. It maintainsa vector of weights as a distribution D over examples. The goal of theWeakLearner algorithm is to �nd a weak hypothesis with moderately lowerror with respect to these weights. Initially, the distribution D1 is uniform,but the boosting algorithm exponentially updates the weights on each roundto force the weak learner to concentrate on the examples which are hardestto predict by the preceding hypotheses.More precisely, let Dt be the distribution at round t, and ht : X ! R theweak rule acquired according to Dt. In this setting, weak hypotheses ht(x)also make real{valued con�dence{rated predictions (i.e., the sign of ht(x) isthe predicted class, and jht(x)j is interpreted as a measure of con�dence inthe prediction). A parameter �t is then chosen and the distribution Dt isupdated. The choice of �t will be determined by the type of weak learner (seenext section). In the typical case that �t is positive, the updating functiondecreases (or increases) the weights Dt(i) for which ht makes a good (orbad) prediction, and this variation is proportional to the con�dence jht(xi)j.4



The �nal hypothesis, f , computes its predictions using a weighted vote ofthe weak hypotheses.In [14] it is proven that the training error of the AdaBoost algorithm (i.e.the fraction of training examples i for which the sign of f(xi) di�ers from yi)is at mostQTt=1 Zt, where Zt is the normalization factor computed on roundt. This upper bound is used in guiding the design of both the parameter �tand the WeakLearner algorithm, which attempts to �nd a weak hypothesisht that minimizes Zt.2.1 Learning Weak RulesIn [14] three di�erent variants of AdaBoost are de�ned, corresponding tothree di�erent methods for choosing the �t values and calculating the pre-dictions of the weak hypotheses. In this work we concentrate on AdaBoostwith real{valued predictions since it is the one that has achieved the bestresults in the Text Categorization domain [15].According to this setting, weak hypotheses are simple rules with real{valued predictions. Such simple rules test the value of a boolean predicateand make a prediction based on that value. The predicates used refer to thepresence of a certain word in the text, e.g. \the word money appears in themessage". Formally, based on a given predicate p, our interest lies on weakhypotheses h which make predictions of the form:h(x) = � c0 if p holds in xc1 otherwisewhere the c0 and c1 are real numbers.For a given predicate p, the values c0 and c1 are calculated as follows.Let X1 be the subset of examples for which the predicate p holds and letX0 be the subset of examples for which the predicate p does not hold. Let[[�]], for any predicate �, be 1 if � holds and 0 otherwise. Given the currentdistribution Dt, the following real numbers are calculated for j2f0; 1g, andfor b2f+1;�1g: W jb = mXi=1 Dt(i)[[xi 2 Xj ^ yi = b]] :That is, W jb is the weight, with respect to the distribution Dt, of thetraining examples in partition Xj which are of class b. As it is shown in [14]5



Zt is minimized for a particular predicate by choosing:cj = 12 ln W j+1W j�1! : (1)and by setting �t = 1. These settings imply that:Zt = 2 Xj2f0;1gqW j+1W j�1 : (2)Thus, the predicate p chosen is that for which the value of Zt is smallest.Very small or zero values for the parameters W jb cause cj predictionsto be large or in�nite in magnitude. In practice, such large predictionsmay cause numerical problems to the algorithm, and seem to increase thetendency to over�t. As suggested in [15], the following smoothed values forcj have been considered: cj = 12 ln W j+1 + �W j�1 + �! : (3)giving � the value 1=m. This smoothing a�ects the value of Z as follows:Zt = Xj2f0;1g0@W j+vuutW j� + �W j+ + � +W j�vuutW j+ + �W j� + �1A : (4)It is important to see that the so far presented weak rules can be directlyseen as decision trees with a single internal node (which tests the value of aboolean predicate) and two leaf nodes that give the real-valued predictionsfor the two possible outcomes of the test. These extremely simple decisiontrees are sometimes called decision stumps. In turn, the boolean predicatescan be seen as binary features (we will use the word feature instead ofpredicate from now on). Thus, the already described criterion for �ndingthe best weak rule, or the best feature, can be seen as a natural splittingcriterion and used for performing decision{tree induction [14].Following the idea suggested in [14] we have extended the WeakLearneralgorithm to induce arbitrarily deep decision trees. The splitting criterionused consists in choosing the feature that minimizes equation (2), while thepredictions at the leaves of the boosted trees are given by equation (1). Notethat the general AdaBoost procedure remains unchanged.In this paper, we will denote as TreeBoost the AdaBoost algorithm in-cluding the extended WeakLearner. TreeBoost[d] (or TB[d] in some �gures)will stand for a learned classi�er with weak rules of depth d. As a specialcase, TreeBoost[0] will be denoted as Stumps.6



3 Setting3.1 Domain of ApplicationThe empirical experiments in this work have been performed on two pub-lic corpora for the anti-spam email �ltering problem: the PU1 and theLingSpam.1 The PU1 corpus contains personal messages and spam mes-sages. The LingSpam corpus contains messages extracted from the Linguistlist and spam messages. Table 3.1 shows the sizes of the two corpora. On theone hand, the percentage of spam emails on the LingSpam seems to be morerealistic than the percentage on the PU1. On the other hand, the topics oflegitimate messages in the PU1 are more diverse than in the LingSpam, inwhich all messages are related to linguistics.The two corpora are presented partitioned into 10 folds, in order toperform the experiments using 10-fold cross-validation.The feature set of the corpora is the commonly used in the text catego-rization literature bag-of-words model with binary features. In this model,each word in the vocabulary forms a binary feature, and a message is repre-sented having the features corresponding to the occurring words set to true.The features of the PU1 corpus are given encrypted, in order to protect theprivacy of the personal messages. Four versions of the corpora are available,di�ering on the use of two resources: a stop-word list and a lemmatizer.The enabling/disabling of these two resources in the generation results inthe following four versions:� BARE: No resources used. The features are the lower-cased words.� LEMM: Lemmatizer used; no stop-word removal.� STOP: Stop-word list used; no lemmatizer.� LEMM STOP: Both lemmatizer and stop-word list used.Table 3.1 shows the feature space dimension of the four versions.3.2 Experimental MethodologyEvaluation Measures. The measures used in this paper for evaluatingthe spam �ltering system are introduced in this section. Let S and L bethe number of spam and legitimate messages in the corpus, respectively; let1The two corpora are freely available from the following addresshttp://www.iit.demokritos.gr/�ionandr7



PU1 LingspamMessages 1,099 2,893Spam 481 481Legitimate 618 2,412Spam % 43.7% 16.6%BARE size 26,449 65,723LEMM size 23,312 NASTOP size 26,275 NALEMM STOP size 23,137 NATable 1: Dimensions of the evaluation corpora.S+ denote the number of spam messages that are correctly classi�ed by asystem, and S� the number of spam messages misclassi�ed as legitimate. Inthe same way, let L+ and L� be the number of legitimate messages classi�edby a system as spam and legitimate, respectively. These four values form acontingency table which summarizes the behaviour of a system. The widely-used measures precision (p), recall (r) and F� are de�ned as follows:p = S+S+ + L+ r = S+S+ + S� F� = (�2 + 1)pr�2p+ rThe F� measure is the harmonic mean between precision and recall, andwith � = 1 gives equal weigth to the combined measures. Additionally, someexperiments in the paper will also consider the accuracy measure (acc =L�+S+L+S ).A way to distinguish the two types of misclassi�cation is the use of utilitymeasures [9] used in the TREC evaluations [11]. In this general measure,positions in the contingency table are associated loss values, �S+, �S�, �L+,�L�, which indicate how desirable are the outcomes, according to a user-de�ned scenario. The overall performance of a system in terms of the utilityis S+�S+ + S��S� + L+�L+ + L��L�.Androutsopoulos et al. [1] propose particular scenarios in which misclas-sifying a legitimate message as spam is � times more costly than the sym-metric misclassi�cation. In terms of utility, these scenarios can be translatedinto �S+ = 0, �S� = �1, �L+ = �� and �L� = 0. They also introducethe weighted accuracy (WAcc) measure, which is a �-cost sensitive accuracymeasure: WAcc = � � L� + S+� � L+ S8



When evaluating �ltering systems, this measure su�ers from the sameproblems as standard accuracy [18]. Despite this fact, we will use it forcomparison purposes.3.3 Baseline AlgorithmsIn order to compare our boosting methods against other techniques, weinclude the results of the following algorithms on the two evaluation corpora:� Decision Trees. Standard TDIDT learning algorithm, using theRLM distance-based function for feature selection. We have evalu-ated it on the PU1 corpus. See [10] for complete details about theparticular implementation.� Naive Bayes. We include the best reported results obtained by thenaive bayes approach on the PU1 Corpus [1] and on the LingSpam [2].� k-NN. We include the best results on the LingSpam corpus reportedin [2].� Stacking. This approach combines Naive Bayes and k-NN in a stackof classi�ers. Several con�gurations are evaluated on the LingSpamcorpus in [13]; we report the best results of that paper.3.4 Tuning ProcedureThis section presents a general procedure for empirically tuning a parame-ter of the system, according to a given optimization criterion. The tuningprocedure is designed for being part of the 10-fold cross-validation process.Given a parameter p to be tuned, an evaluation measure and an optimizationcriterion, the procedure is the following:1. For each trial in the 10-fold cross-validation process:� Use 8 of the 9 training subsets for learning a classi�er. We selectthe 8 folds randomly. The remaining fold is used as a validationsubset.� For a range of values of the parameter p, test the classi�er on thevalidation subset.2. For each tested value of p, compute the evaluation measure using theoutputs of all the trials. 9



3. According to the optimization criterion, select the best value for p asthe value to be used in the �nal system.4 Experiments4.1 Comparing methodsThe purpose of our �rst experiment is to show the general performance ofAdaBoost in the spam-�ltering domain. Six AdaBoost classi�ers have beenlearned, setting the depth of the weak rules from 0 to 5; we denote eachclassi�er as TreeBoost[d], where d stands for the depth of the weak rules;as a particular case, we denote the TreeBoost[0] classi�er as Stumps. Eachversion of TreeBoost has been learned for up to 2,500 weak rules on the PU1and 1,000 weak rules on the LingSpam.Figure 1 shows the F1 measure of each classi�er learned, as a functionof the number of rounds used. These plots also contain the performance ofthe baseline algorithms. It can be seen that TreeBoost clearly outperformsthe other algorithms. The experiment also shows that, above a certainnumber of rounds, all TreeBoost versions achieve consistent good results,and that there is no over�tting in the process. After 150 rounds of boosting,all versions reach an F1 value above 97% on the two corpora. It can benoticed that the deeper the weak rules, the smaller the number of roundsneeded to achieve good performance. This is not surprising, since deeperweak rules handle much more information. Additionally, the �gure showsavobe the stabilization, increasing the number of rounds results only in slightvariations of the F1 measure.A concrete value for the T parameter of the TreeBoost learning algorithmmust be given, in order to obtain real classi�ers and to be able to make com-parisons between the di�erent versions of TreeBoost and baseline methods.To our knowledge, it is still unclear what is the best way for choosing T .On the PU1, we have estimated the T parameter with the tuning procedurepresented in section 3.4, giving T values from 1 to 2,500 in steps of 25 andselecting the value which maximizes the F1 measure. Since the performanceis very stable and the tuning procedure involves intense processing, we have�xed 1,000 rounds for the classi�ers on the LingSpam corpus.Tables 2 and 3 present the results of all classi�ers on the two corpora.For each classi�er, we include the number of rounds used, recall, precision,F1 and the maximum F1 achieved all over the rounds learned. Accordingto the results, boosting classi�ers clearly outperform the other algorithms.Naive Bayes, k-NN and the Stack achieve precision rates slightly lower than10
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those obtained by boosting classi�ers; however, the obtained recall rates aremuch lower. T recall precision F1 Fmax1N. Bayes - 83.98 95.11 89.19 -D. Trees - 89.81 88.71 89.25 -Stumps 525 96.47 97.48 96.97 97.39TreeBoost[1] 525 96.88 97.90 97.39 97.60TreeBoost[2] 725 96.67 98.31 97.48 97.59TreeBoost[3] 675 96.88 97.90 97.39 97.81TreeBoost[4] 450 97.09 98.73 97.90 98.01TreeBoost[5] 550 96.88 98.52 97.69 98.12Table 2: Performance of all classi�ers on the PU1 corpusAccuracy results have been compared using the 10-fold cross-validatedpaired t test. Boosting classi�ers perform signi�cantly better than DecisionTrees.2 On the contrary, no signi�cant di�erences can be observed betweenthe di�erent versions of TreeBoost. More interestingly, it can be noticed thataccuracy and precision rates slightly increase with the expressiveness of theweak rules, and that this improvement does not a�ect the recall rate. Thisfact will be exploited in the following experiments.4.2 High-Precision classi�ersThis section is devoted to evaluate TreeBoost in high-precision scenarios,where only a very low (or null) proportion of legitimate to spam misclassi�-cations is allowed.4.2.1 Rejection Curves.We start by evaluating whether the con�dence of a prediction, i.e., the mag-nitude of the prediction, is a good indicator of the quality of the predictionor not. For this purpose, rejection curves are computed for each classi�er.The procedure to compute a rejection curve is the following: For increas-ing proportions p between 0 and 100, reject the p% of the less con�dentpredictions, both positive or negative, and compute the accuracy of the re-maining (100 � p)% predictions. The desired behaviour is that accuracyvalues smoothly increase as long as p increases.2Since we do not own the other classi�ers, no tests have been ran; but presumablyboosting methods are also signi�cantly better.12



T recall precision F1 Fmax1N. Bayes - 82.40 99.00 89.94 -k-NN - 88.60 97.40 92.79 -Stacking - 91.70 96.50 93.93 -Stumps 1,000 97.92 98.33 98.12 98.33TreeBoost[1] 1,000 97.30 98.53 97.91 98.12TreeBoost[2] 1,000 96.67 98.52 97.59 98.11TreeBoost[3] 1,000 96.47 98.93 97.68 98.01TreeBoost[4] 1,000 96.26 99.14 97.68 97.89TreeBoost[5] 1,000 96.26 99.14 97.68 97.90Table 3: Performance of all classi�ers on the LingSpam corpusFigure 2 plots the rejection curves computed for the six learned classi-�ers. Three curves are given in each plot: the accuracy curve, noted as `All',the curve considering only misclassi�cations of spam as legitimate, noted as`S to L', and the curve considering the misclassi�cations of legitimate asspam, noted as `L to S'. The latter are the undisired type of errors of thesescenarios. The following conclusions can be drawn:� The con�dence of a prediction is a good indicator of its quality. Thehigher the con�dence of the predictions considered, the higher theaccuracy achieved.� The depth of weak rules greatly improves the quality of the predictions.On the PU1 corpus, whereas Stumps needs to reject the 73% of theless con�dent examples to achieve a 100% of accuracy, TreeBoost[5]only needs 23%. A similar but less signi�cant behaviour occurs on theLingSpam. In other words, deeper TreeBoost �lters concentrate themisclassi�ed examples closer to the decision threshold.� Spam predictions seem to be better than legitimate predictions, sincethe errors produced by the most con�dent predictions are of the type `Sto L'. A possible explanation is that the classi�ers are biased to predictthe most frequent class, that is legitimate. However, the results arenot signi�cant enough for stating this idea.� A potential �nal email �ltering application could have the followingspeci�cation: Messages whose con�dence of the prediction is greaterthan a threshold � are automatically classi�ed, i.e., spam messages are13



`blocked' and legitimate messages are delivered to the user. Messageswhose prediction con�dence is lower than � are stored in a specialfold for dubious messages. The user has to verify if these are legit-imate messages. This speci�cation is suitable for having automatic�lters with di�erent degrees of strictness (i.e., di�erent values for the� parameter). � values could be tuned using the procedure of section3.4.4.2.2 Cost{Sensitive Evaluation.In this section, TreeBoost classi�ers are evaluated using the �-cost measuresintroduced in section 3. Three scenarios of strictness are presented in [1]:a) No cost considered, corresponding to � = 1; b) Semi-automatic scenario,for a moderately accurate �lter, giving � = 9; and c) Completely automaticscenario, for a very high accurate �lter, assigning � = 999. As noted insection 3, we will consider these scenarios as particular utility matrices.In [16] a simple modi�cation of the AdaBoost algorithm for handlinggeneral utility matrices is presented. The idea is to initialize the weightdistribution of examples according to the given utility matrix, and thenrun the learning algorithm as usual. We have performed experiments withthis setting, but the results are not convincing: only the initial rounds ofboosting are a�ected by the initialization based on utility; after a number ofrounds, the performance seems to be like if no utility had been considered.Since our procedure for tuning the number of rounds can not determinewhen the initial stage ends, we have rejected this approach. We think thatan appropiate modi�cation of the AdaBoost algorithm should also considerthe weight updating function.Another approach consists in adjusting the decision threshold �. In adefault scenario, corresponding to � = 1, an example is classi�ed as spam ifits prediction is greater than 0; in this case, � = 0. Increasing the value of� results in a higher precision classi�er. Lewis presented [9] a procedure forcalculating the optimal decision threshold for a system, given an arbitraryutility matrix. The procedure is valid only when the system outputs proba-bilities, so the prediction margins resulting from the boosting classi�cationsshould be mapped into probabilities. A method for estimating probabilitiesgiven the output of AdaBoost is suggested in [7], using a logistic function.Initial experiments with this function have not worked properly, becauserelatively low predictions are sent to extreme probability values. A possiblesolution would be to scale down the predictions before applying the prob-ability estimate; however, it can be observed that prediction margins grow14
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with both the number and the depth of the used weak rules. Since manyparameters are involved in this scaling, we have rejected the probabilityestimation of predictions.Alternatively, we make our classi�cation scheme sensitive to the � fac-tor by tuning the � parameter to the value which maximizes the weightedaccuracy measure. Once more, the concrete value for � is obtained usingthe tuning procedure of section 3.4, in which several values for the param-eter are tested. Tables 4 and 5 summarize the results obtained on the twocorpus, giving � factor values of 9 and 999. Results presented in [1] for thePU1 corpus, and [2] and in [13] for the LingSpam corpus are also reported.Again, TreeBoost clearly outperforms the baseline methods. On the PU1corpus, with � = 9, very high-precision rates are achieved, maintaining con-siderably high recall rates. It seems that the depth of TreeBoost slightly im-proves the performance, although no signi�cant di�erences can be achieved.For � = 999, precision rates of 100% (which is the implicit goal in thisscenario) are achieved, except for Stumps, maintaining fair levels of recall.However, recall rates are slightly unstable with respect to the depth of Tree-Boost varying from 64.45% to 76.30%. On the LingSpam corpus, with� = 9, TreeBoost classi�ers achieve very high-precision rates and recall ratesaround 95% which clearly outperform the other methods. For � = 999 veryhigh-precision rates are achieved, but the recall rates are unstable. In thiscorpus, the di�erences in performance with respect to the depth of the weakrules are also unstable, and not convincing enough for stating conclusions.Our impression is that high values in the � factor seem to introduceinstability in the evaluation, which becomes oversensitive to outliers. Forexample, on the PU1, which contains 1,099 examples, weighted accuracydoes not work properly when giving � values of 999, since the misclassi�ca-tion of only one legitimate message leads to score worse than if any email hadbeen �ltered (this would give WAcc = 99:92%). Moreover, for 100% preci-sion values, the recall variation from 0% to 100% only a�ects the measurein 0.08 units.4.3 Secure RecallIn order to give a clearer picture of the behaviour of classi�ers when movingthe decision threshold, we include in Figure 3 the precision-recall curves ofeach classi�er. These curves are built giving � a wide range of values, andcomputing for each value the recall and precision rates. In these curves,high-precision rates of 100%, 99%, 98% and 95% have been selected so asto obtain the recall rate at these points. Table 6 summarizes these sam-16



� = 9 � = 999� Recall Prec. WAcc � Recall Prec. WAccNB - 78.77 96.65 96.38 - 46.96 98.80 99.47Stumps 09.2 89.60 99.08 98.58 16.3 84.20 99.51 99.66TB[1] 10.2 93.55 98.71 98.59 46.9 74.43 100 99.98TB[2] 24.1 93.76 98.90 98.76 96.7 76.30 100 99.98TB[3] 45.2 91.48 99.32 98.87 126.4 74.01 100 99.98TB[4] 19.1 94.80 99.35 99.14 123.1 64.45 100 99.97TB[5] 37.4 93.97 99.12 98.92 178.0 66.53 100 99.97Table 4: Cost{sensitive evaluation results on the PU1 corpus.ples. All the variants are indistinguishable at level of 95% of precision.However, when moving to higher values of precision (� 95%) a signi�cantdi�erence seems to occur between Stumps and the rest of variants usingdeeper weak rules. This fact proves that increasing the expressiveness ofthe weak rules can improve the performance when requiring very high pre-cision �lters. Unfortunately, no clear conclusions can be drawn about themost appropriate depth. Parenthetically, it can be noted that on the PU1TreeBoost[4] achieves the best recall rates.4.4 Experiments with other Feature SetsThe last experiment of this paper explores the performance of boostingclassi�ers in all the available feature space versions of the PU1 corpus; thesedi�er in the type of features used to represent the messages. For each ver-sion of the corpus, namely BARE, LEMM, STOP and LEMM STOP, aTreeBoost[3] classi�er has been learned, with up to 2500 rounds of boosting.Since the intention of this experiment is to show if more complex featurescan potentially perform better, no tuning procedure to get a concrete Tvalue is required. Figure 4 shows the F1 measure with respect to the num-ber of weak rules used. It can be observed that all classi�ers perform verysimilar (left �gure), although slight improvements of 1 point can be obtainedwith lemmatized features (right �gure). These results agree with the onesreported by Androutsopoulos et al. in [1].5 ConclusionsThe experiments presented in this paper show that the AdaBoost learningalgorithm is appropiate for the spam email �ltering problem. It clearly17



� = 9 � = 999� Recall Prec. WAcc � Recall Prec. WAccNB - 77.57 99.45 99.43k-NN - 81.90 98.80 99.40 results not providedStack - 84.80 98.80 99.46Stumps 7.0 96.47 99.15 99.76 82.0 52.81 99.61 99.95TB[1] 26.0 94.80 99.35 99.77 217.1 50.94 100 99.99TB[2] 31.2 95.22 98.92 99.69 209.5 77.55 99.73 99.95TB[3] 32.5 95.84 99.14 99.75 342.6 74.22 100 99.99TB[4] 26.0 95.84 99.14 99.75 337.2 81.91 100 99.99TB[5] -9.1 96.26 99.14 99.76 451.1 79.83 100 99.99Table 5: Cost{sensitive evaluation results on the LingSpam corpus.PU1100% 99% 98% 95%Stumps 62.37 87.94 94.17 98.75TreeBoost[1] 81.91 91.26 96.88 98.75TreeBoost[2] 81.49 90.64 97.08 98.54TreeBoost[3] 77.54 93.13 96.88 98.54TreeBoost[4] 80.24 96.25 97.71 98.75TreeBoost[5] 77.75 93.55 97.29 98.75LingSpam100% 99% 98% 95%Stumps 44.70 97.50 98.38 98.96TreeBoost[1] 77.75 95.42 98.55 99.80TreeBoost[2] 76.30 94.60 98.55 99.58TreeBoost[3] 85.65 96.25 98.96 99.37TreeBoost[4] 83.99 96.88 98.75 99.16TreeBoost[5] 85.56 96.67 98.54 98.96Table 6: Recall rate of �ltered spam messages with respect to �xed pointsof high-precision rate 18



PU1 CorpusStumps TreeBoost[1] TreeBoost[2]
70

75

80

85

90

95

100

60 65 70 75 80 85 90 95 100
70

75

80

85

90

95

100

60 65 70 75 80 85 90 95 100
70

75

80

85

90

95

100

60 65 70 75 80 85 90 95 100TreeBoost[3] TreeBoost[4] TreeBoost[5]
70

75

80

85

90

95

100

60 65 70 75 80 85 90 95 100
70

75

80

85

90

95

100

60 65 70 75 80 85 90 95 100
70

75

80

85

90

95

100

60 65 70 75 80 85 90 95 100LingSpam CorpusStumps TreeBoost[1] TreeBoost[2]
70

75

80

85

90

95

100

40 50 60 70 80 90 100
70

75

80

85

90

95

100

40 50 60 70 80 90 100
70

75

80

85

90

95

100

40 50 60 70 80 90 100TreeBoost[3] TreeBoost[4] TreeBoost[5]
70

75

80

85

90

95

100

40 50 60 70 80 90 100
70

75

80

85

90

95

100

40 50 60 70 80 90 100
70

75

80

85

90

95

100

40 50 60 70 80 90 100Figure 3: Precision-Recall curves and recall values for the �xed precisionrates at 100%, 99%, 98% and 95%. x axis: recall; y axis: precision.19



65

70

75

80

85

90

95

100

1 5 25 100 500 1000 2500

F
1

Number of rounds

BARE
LEMM
STOP

LEMM STOP
95

96

97

98

99

100

0 500 1000 1500 2000 2500

F
1

Number of rounds

BARE
LEMM
STOP

LEMM STOPFigure 4: Error rate of TreeBoost[3] classi�ers learned with di�erent featuresets on the PU1. The right-hand side plot is a zoom of the left-hand sideplot.outperforms Decision Trees, Naive Bayes and k-NN methods on the two eva-luated benchmark corpora: the PU1 corpus and the LingSpam corpus. Inthese data sets, the method is resistant to over�tting and F1 rates above 97%are achieved. Procedures for automatically tuning the classi�er parameters,such as the number of boosting rounds, are provided.In scenarios where high-precision classi�ers are required, AdaBoost clas-si�ers have been proved to work properly. Experiments have exploited theexpressiveness of the weak rules when increasing their depth. It can be con-cluded that deeper weak rules tend to be more suitable when looking for avery high precision classi�er. In this situation, the achieved results on thetwo corpura are fairly satisfactory.Two AdaBoost classi�ers capabilities have been shown to be useful in�nal email �ltering applications: a) The con�dence of the predictions sug-gests a �lter which only classi�es the more con�dent messages, deliveringthe remaining messages to the �nal user. b) The classi�cation threshold canbe tuned to obtain a very high precision classi�er.6 Future WorkAs a future research line, we would like to study the presented techniques ina more di�cult corpus. We think that both the PU1 and the LingSpam aretoo easy, and that the PU1 is also too small. Due to these fatcs, default pa-rameters produce very good results, and the tuning procedures result only inslight improvements. Moreover, some experiments not reported here (whichstudy the e�ect of the number of rounds, the use of richer feature spaces,20



etc.) have shown us that the con�dence of classi�ers depends on several pa-rameters. Using a larger corpus, the e�ectiveness of the tuning procedureswould be more explicit and, hopefully, more signi�cant conclusions aboutthe optimal parameter settings of AdaBoost could be drawn.In order to overcome these limitations, we are currently working on thedevelopment of a new corpus which will contain messages in two languages,English and Spanish, with a realistic proportion of spam messages. Ourintention is to make available most of the information in the header andthe body of the messages, which will allow to experiment with other featurespaces than the typical `bag of words' model. For example, we think thatinformation about the components of the sender email address, the numberand sequences of some special characters, such as spaces or `$', and n-gramsof some words can be relevant for identifying spam messages. Moreover, wewant to keep the date and time of messages in the header, which will allowto simulate a �ltering system across time.Another interesting line for future research is the portability of anti-spam�lters, that is, to study how a �lter learned in a particular data set performsin a di�erent data set. We think that this is a very important issue forgeneral NLP systems which are intended to be �nal real applications. Sincethe features provided in the PU1 corpus are encoded and the features in theLingSpam are not, the study of the portability is not possible between thesetwo corpora. Our new future corpus will allow to study the portability of�lters against the LingSpam corpus and across time.Regarding to the learning process, we would like to study the introduc-tion of the misclassi�cation costs inside the AdaBoost learning algorithm.Initial experiments with the method proposed in [16] have not worked pro-perly, although we believe that learning directly classi�ers according to someutility settings will perform better than tuning a classi�er once learned.In addition, we would like to experiment with the following two learningalgorithms: 1) Alternating Decision Trees [6], for being a boosting-basedtechnique that generalizes the notion of lineraly combined decision trees,and 2) Support Vector Machines, for being the other top-performing methodin Text Categorization problems.AcknowledgmentsThis research has been partially funded by the EU (IST-1999-12392) andby the Spanish (TIC2000-0335-C03-02, TIC2000-1735-C02-02) and Catalan(1997-SGR-00051) Governments. Xavier Carreras holds a grant by the De-21
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